electric displacement meaning in Chinese
电位移
介电移
Examples
- Electric displacement vector
电位移矢量 - Maxwell ' s equations conserve certain properties ? the magnetic field intensity , the electric displacement field and the poynting vector that describes the electric flux of an electromagnetic field
麦克斯韦方程中有某些特性是恒定不变的磁场强度、电位移场以及描述电磁场电通量的坡印廷矢量。 - With the help of these solutions and definitions of electroelastic field intensity factors , exact expressions for mode , mode and mode stress intensity factors as well as mode electric displacement intensity factor are obtained
使用这些解析解和电弹性场强度的定义,得到了裂纹前沿型、型和型应力强度因子以及电位移强度因子的精确表达式。 - Based on the theories of hybrid / mixed finite element method , the generalized energy functional including stress , mechanical displacement , electric displacement , electric field and electric potential is used , with the electric - potential relations and the constitutive equations of piezoelectric materials constrained , hybrid energy functional including mechanical displacement , electric potential and stress is gained . moreover , splitting in - plane components and transverse components , the mixed energy functional in which mechanical displacement , transverse stresses and electric potential as basic variables is derived . with the use of surface stress parameters of sub - elements , the continuity of transverse stress at interfaces between layers is obtained
在回顾杂交混合有限元理论的基础上,从包括位移、应力、应变、电势、电位移、电场强度六个未知量的广义压电材料能量泛函出发,通过约束电场强度?电势关系、应力与应变及电场强度的关系,得到仅包括位移、电势、应力三个未知量的杂交变分泛函,利用一般层合板的杂交混合变分原理,分离面内分量和横向分量,导出以位移、横向应力、电势为未知量的压电层合板的修正变分泛函,作为压电层合板的杂交元列式的理论基础。 - Charge qs was located near the interface of silicon and oxide . with more charge , the field of buried oxide was improved up to the critical breakdown field basis on entirely continuity of electric displacement vector , and then the vertical breakdown voltage was raised . the comparisons between analytical and simulative results proved its availability of this model to interpret the vertical blocking mechanism
该模型认为,将界面电荷qs引入i层si / sio2的si界面,根据电位移矢量的全连续性,界面电荷qs越多,使i层内电场增加,直至sio2的临界电场,从而提高纵向击穿电压vb . v ,很好得解决了器件的纵向耐压问题。
Related Words
- elastic displacement
- rotor displacement
- displacement hull
- displacement type
- current displacement
- ganglia displacement
- fluid displacement
- displacement behavior
- displacement divelopment
- displacement coefficient
- electric disintegration drill
- electric disintegration drilling
- electric displacement density
- electric displacement line